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Abstract—A complete plane wave spectral eigenfunction ex-

pansion of the electric dyadic Green’s function for a planar
multilayered dielectric/magnetic media is given in terms of a

pair of the (.t?)-propagating solenoidal eigenfunctions, where

(1) is normal to the interface, and it is developed via a utiliza-
tion of the Lorentz reciprocity y theorem. This expansion also
contains an explicit dyadic delta function term which is re-
quired for completeness at the source point. Some useful con-

cepts such as the effective plane wave reflection and transmis-

sion coefficients are employed in the present spectral domain

eigenfunct ion expansion. The salient features of this Green’s

function are also described along with a physical interpreta-

tion.

1. INTRODUCTION

A COMPLETE plane wave spectral (PWS) type eigen-

function expansion of the electric dyadic Green’s

function for the planar multilayered dielectric/magnetic

media is given in this paper in terms of a pair of the (f)-

directed solenoidal eigenfunctions, where (2) is normal to

the interface, and it is developed via a utilization of the

Lorentz reciprocity theorem. This expansion also con-

tains an explicit dyadic delta function term which is re-

quired for making the representation complete at the

source point. The geometry of this problem is shown in

Fig. 1. The electrical ~arameters in each of the layers are

assumed to be homogeneous and isotropic. It is shown

that the field at a given point consists of four distinct wave

types (two for each TE and TM type) caused by the pres-

ence of the multilayered media. This dyadic Green’s

function is useful in many problems dealing with the strat-

ified media, i.e., scattering from buried objects in the lay-

ered earth, or in the design of high performance finite

phased arrays in multilayered dielectric/magnetic envi-

ronment. Since the dyadic Green’s function derived here

is for an arbitrarily oriented current point source, it can

also be utilized for the applications where the current ele-

ments are obliquely rather than horizontally or vertically
oriented with respect to the planar interfaces.

The plane wave spectrum (PWS) integral representa-
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Fig. 1. Electric point current dipole source in a multi-layered dielectric/
magnetic media. Also the planar surfaces .S> and ,S< slightly above and
below the source are shown.

tion of the dyadic Green’s function for this canonical

problem may be constructed in several ways. One of the

most common approaches is to express the Green’s func-

tion in terms of a magnetic vector potential [1]-[5],

whereas another approach is to construct the Green’s

function from a set of appropriate electric and magnetic

vector potentials [6]–[ 10], [21]. In the former case, the

magnetic vector potential in general has components

which are parallel and normal to the interface even if the

electric point current source does not possess a compo-

nent which is normal to the interface. In the other ap-

proach, the magnetic and electric vector potentials are

generally chosen so that they are both normal to the in-

terface. If the electric point current source is chosen nor-

mal to the interface, then the two approaches become

identical since only a single normally directed magnetic

vector potential suffices in this case. This is related to the

fact that the normally oriented current moment only ex-

cites the TM waves (with respect to the (~)-coordinate di-

rection), whereas the electric current moment parallel to
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the interface excites both TM and TE waves. Therefore

the total electromagnetic waves must be constructed either

with the magnetic vector potential which can produce both

TM and TE waves (in this case magnetic vector potential

must have components normal and parallel to the inter-

face) in order to satisfy the appropriate boundary condi-

tions, or with the magnetic and electric vector potentials

which are both normal to the interface (since a normally

directed magnetic vector potential produces TM waves

and a normally directed electric vector potential produces

TE waves). One of the main advantages of the latter for-

mulation is that the boundary conditions associated with

the differential operators for the two different types of

vector potentials can be decoupled. In the case of a choice

of a single type of magnetic vector potential containing

both a vertical (f) and a horizontal (transverse) to (I) com-

ponent, the transverse component (parallel to interface)

of that magnetic vector potential will contribute to both

TE and TM waves; therefore, the bounda~ conditions for

normal and transverse potential components will be cou-

pled. This disadvantage will be more pronounced if one

deals with the stratified or multilayer dielectric/magnetic

media, for which the number of coupled boundary con-

ditions increase, thereby complicating the analysis. Re-

cently Bagby and Nyquist [11], derived a formal repre-

sentation of the dyadic Green’s function for the

multilayered media in terms of the magnetic vector poten-

tial [1], [4], which they specialized for the cases of mi-

crostrip and optical circuit structures. Since only the mag-

netic vector potential is used, the boundary conditions for

the TM and TE waves are coupled in [11], hence, the

natural distinction between the two is lost. Also the dyadic

delta function term, which makes the representation com-

plete at the source point, was not explicitly extracted in

[1 1]; Viola and Nyquist [12], slightly modified that anal-

ysis later to properly extract the dyadic delta function

term. In the present work, we have derived a complete

eigenfunction expansion of the dyadic Green’s function

for the planar multilayered dielectric/magnetic media us-

ing the (f!) -directed solenoidal electric and magnetic (TM

and TE) eigenfunctions. We have used continuous eigen-

modes propagating along a ‘ ‘prefemed” (2)-direction. We

have also employed the orthogonality properties of the ei-

genmodes over an open planar surface [6] transverse to

the direction of the propagation, (2) to construct our

Green’s dyadic. This is a generalization of the discrete

eigenvalues and eigenmodes, that is usually used in the

guided wave theory [13]. Hence, unlike the work reported

previously, this analysis retains the connection between

the closed (waveguides) and open (planar multilayer) type

structure, which is usually lost in the formal Fourier

transform method. In addition, because those eigenvalues
and eigenmodes are only a function of the geometry of

structure, and not the excitation [6], [13], the natural (TM

and TE) eigenmodes reveal the physical behavior of the

fields in the multi-layered dielectric/magnetic media. Fi-

nally, we have employed a method that utilizes only the

solenoidal eigenfunctions [14], and hence, the dyadic

delta function term at the source point is included explic-

itly as a correction to the general solenoidal eigenfunction

expansion which is valid outside the source point. The

electric dyadic Green’s components given in this work ap-

pear to be closely related to those electric field compo-

nents which have been derived by Kong [7], [8], and Chew

[21] utilizing the usual boundary conditions at each of the

interfaces and the proper condition at the source point. As

indicated above, the procedure used here is somewhat dif-

ferent, in that we have utilized the orthogonality of con-

tinuous eigenmc)des at the planar interfaces along with the

Lorentz reciprocity theorem to drive the complete eigen-

function expansion of the electric d~adic Green’s function

which contains a physical interpretation.

The format of the paper is as ~ollows. In Section II, we

outline the procedure required to derive the complete ei-

genfunction expansion of the dyadic Green’s function for

the multilayered media, ~ “ 0, in terms of only the sole-

noidal eigenfmctions. In Section HI, we start with the un-

bounded case, in which the point source radiates with no

interface present, and construct the corresponding dyadic

Green’s function, so, in terms of an integral over the

spectra of plane waves that constitute the continuous ei-

genfunction expansion in which the eigenfunctions are

guided in the preferred f-coordinate direction, using ‘the

procedure described in Section II. This is essentially the

z-propagation (plane wave spectrum) representation of the
free space dyadic Green’s function which is usually rep-

resented by the discrete spherical vector wave type radi-

ally propagating eigenfunction expansion. In Section IV,

the dyadic Green’s function for the multilayered media,

s ““ 0, is then constructed from the principle of the super-

position, which involves the sum of the fields of firstly

the source in free space (or the free space Green’s func-

tion ~ 0, and secondly the fields scattered by the layered

media. Section V deals with the physical interpretation of

the dyadic Green’s function and numerical results. Con-

clusions and discussions are presented in Section VI.

II. FORMIJLATION OF G ‘“0 IN TERMS OF THE

SCJLENOIDAL EIGENFUNCTIONS

In this section we outline a general procedure described

by Pathak, [14]1, which can also be employed to find a

complete eigenf’unction expansion of the electric field in

the multilayered media, Em, and its corresponding dyadic

analog ~” 0 in terms of only the solenoidal eigenfunc-

tions.

The usual Maxwell curl equations for the electric and

magnetic fields Em and H~ within any mth layer (see Fig.

1), respectively, are given by

V x Em = –jwv@m; V x Hm = jox.E. + Jo. (1)

An e ‘“’ time dependence is assumed and suppressed in

(l), and as usual, pm and ~,. are the permeability and per-

mittivity of the medium (m), and Jo is the impressed elec-

tric current soumce. If the electric current density Jo is
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taken to be a point source of strength p. at r = r‘ in the

region (0); then,

Befbre proceeding further, it is important to relate the

dyadic Green’s function to the electric field due to Jo as

[15]

Em(r) = –jtipo
![!

~m’o(r, r“) o Jo(r”) dv”, (3)
u

where s” 0 is the multilayered electric dyadic Green’s

function, and v contains the source region. If Jo(r”) is an

arbitrarily oriented point current source of the strength p.
given in (2), then electric field may be viewed as a distri-

bution; namely,

Em(r) = –jquo S“’’”(r, r‘) oP,. (4)

Let the solenoidal part of the eigenfunction expansion of

the electric field Em, which is valid for z # z‘ (and hence

for r # r ‘), be denoted by EA. The field EL is obtained

in terms of only the solenoidal eigenfunctions because the

electric field has zero divergence for z # z‘. The z-prop-

agating solenoidal eigenfunction expansion of EL can be

expressed as

[

E:, 2>2’
E/n =

E;, Z< z’.
(5)

Alternatively, EL in (5) can be written as

EL = W(Z – Z ‘)E~ + ~(Z ‘ – z)E; , (6)

where the Heaviside unit step function ‘U($) is defined by,

[

1, $>0
‘u(:) =

o, t<o’

and z means the fields for z 2 z‘. The entire space con-

sists of two regions z > z‘ and z < z‘; z = z‘ is the plane

S (normal to .&axis) containing the source, Jo = p, 6( p –

p’) 6(z – z ‘), in region (0) of Fig. 1. It is noted that (PO,

~o) correspond to the constitutive parameters of the me-

dium in region (0); in general, (PO, eo) are different from

those for free space. Consider next the magnetic field H~

due to JO; in particular making use of (5), yields

where H: is the value of the magnetic field H., in the

region (m), for z a z‘. It is clear from (7) that the mag-

netic field H,; is known once E: is known. The fields

H; and Hi must satisfy the proper source condition at

r = r’. In order to impose the boundary condition at the

source point, r = r‘, the volume current density JO must
be expressed in terms of a distribution pe, corresponding

to a “surface” current density at z = z‘ (i. e., on the sur-

face S); thus

.JO=P, MP – P’)Nz –z’) = ~, W- r’)

– p=, 6(2 – z’).— (8)

Now the discontinuity of the tangential magnetic field in

the region (0), across S (at z = z‘) must be equal to the

surface current density at S; namely,

fx(H; – H:) = ~ - p,,, (9)

where it denotes the transverse part of the unit dyad with

respect to f,

f= ft+~; It= fj+jj. (lo)

It is clear that (9) is valid only at z = z‘, so it can be

expressed as

fx(H; – H:), 8(Z – Z’) = f, “ p.,, 8(Z – Z’), (11)

it follows directly from (8) that the above equation be-

comes

or more generally,

This is the expression for the condition on Hm at the source

point, and it directly indicates the appropriate addition to

EL at the source point which is required to yield the com-

plete expansion of E,n. It is important to note that since

the discontinuity condition in (12) relates Hi to Hi
across the source point, one only needs to know

Hi and JY~ to completely specify Hm due to the source

.10 = p. d(r – r’); thus

Hm = W(Z – z ‘)H: + ~(z ‘ – z)H: . (13)

The E~, of (6) can now be readily found by employing

(7), and using the relation based on distribution theory,

[16],

+2 xH:8(z ‘Z’). (14)

From (7), (12) and (14), if follows that

The precise relationship between the complete field Em of

(4) and the incomplete field E~,lof (15) can now be written
by using (

En,(r, r‘

) and (10), [14],

[

. .

= E~(r, r’) – jcopo-:W-r’)1“P.;

Eml:+:, = E&Z,. (16)

The Green’s dyadic ~‘ 0 can be inferred from (16) by
comparison with (4). Thus,

,..

~“’’”(r, r’) = ~“’>o(r, r’) – ~ d(r – r’), (17)
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with

E~(r, r’) = –jup~g’’’’”(r, r’) “ p.. (18)

From the above discussion, it is clear that one can also

construct the complete free space dyadic Green’s func-

tion, s 0, in terms of the “z-propagating” solenoidal ei-

genfunctions which will be obtained in the following sec-

tion.

111. CONSTRUCTION OF THE FREE SPACE DYADIC

GREEN’S FUNCTION, $j’0

In this section, the procedure outlined in the previous

section is applied to obtain an explicit expansion for ~ 0

which is associated with an electric point current source,

JO = p, Mr – r‘), which radiates in an unbounded me-
dium with parameter (PO, eo) which are the same as in

region (0) with no interface present. In the following sec-

tion, the procedure developed here will be extended to

explicitly obtain the dyadic Green’s function ~~’0 of (17)

for the multilayered media. The first step in the procedure

for obtaining the free space electric field E. and its cor-

responding ~ 0 involves the construction of a z-propagati-

ng PWS solenoidal eigenfunction expansion of EL which

is complete if z # z‘.

The geometry of the problem dealing with a homoge-

neous (free) space with constitutive parameters (po, Co)

excited by JO = p, ~(r – r‘) is illustrated in Fig. 2. The

solenoidal eigenfunctions for this problem are chosen to

propagate in the preferred ~~-coordinate direction. The

source point at r = r‘ lies in the plane S at z = z‘ as in

Fig. 2. Let E ~ and Ha denote the continuous PWS so-

lenoidal vector wave function expansions for the electric

and magnetic fields, due to JO in the absence of the inter-

face; thus,

E= = E)= + Elf=; H= =H’= + H“=, (19)

and [6],

J
E= = dkt(a’a e’= +a’’z e’’=);

!
H= = dkt(a’=lz’ - +a’’zh’’~), (20)

where prime (’) and double prime (“) refer to TM and TE

wave components with respect to the preferred &coordi-

nate direction, respectively, and h‘ and e” can be derived

from the solenoidal magnetic and electric 2-directed vec-

tor potentials,

h’s =

J= _e–

and

Jl= _e–

h,,= =

(II’, II “), respectively [6], [13],

72 x VJI’=;

f x vJI”=;

131

where, Vl is the transverse (to f) part of the V operator.

Electric and magnetic potentials, II’ and II”, which can

also be viewed ;as a pair of Debye potentials [5], [17] sat-

isfy the well known Helmholtz equation; their associated

&propagating e igenfunctions can be expressed as

11~(-k,) = ~ exp[–j(–k, “ p + KOZ)]; (23)

where prime (‘) and double prime (”) have been omitted

for convenience; kf, Ko, and ~ are respectively defined as

k, = x?kx+ jky; k, = -; Ko = ~, (24)

and

In the above formulation, the variable k, (i.e., f k,, + jkY;

dkt = dkx dky) are the continuous eigenvalues which span

over the entire spectral domain ( – m < kx < co; and – m

< >kY < m). The unknown spectral amplitudes a‘ ~ and

a ‘ < of (20) associated with the TM and TE modal fields

respectively, are found from an application of the Lorentz

reciprocity theorem to the pair of the fields (E ~, H ~ ) of

(20) and the source free solenoidal vector wavefunctions

(es, h‘) in the region Vo, bounded by planar surfaces S>

and S<, which are slightly above and below the surface S

of Fig. 2, respectively, [13], [14]1:

uds”(EZxh3–e Sx H’)

s> +s<

. wdue= “J.

Vo

=es “p.. (26)

The solenoidal vector wavefunctions e z and h ~ satisfy

the orthogonality condition on the surface S< and S>;

namely,

~!
ds o (e<(~k,) x h’ (-k/))

SZ

where fl can be Q’ or Q” for the TM and TE cases, re-

spectively; thus,

Q’ = l/ll~; !2” = $,
Vo

(28)

‘We apply the Lorentz reciprocity theorem to the volume VO here with

the radiation condition implied as p + w.
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Fig. 2. Imagina~plane S,parallel toxyplane, passing through thesourceatz = z’ inthe free space. Also plotted are planar
surfaces S> and S< slightly above and below the source.

with the unit vector f ~ directed along the outward normal

to the surface S= = + z; and q~ and T( are associated with

the TM and TE wave impedances for region (0) and de-

fined as

(29)

Incorporating (20) and (27) into (26) yields

In deriving the orthogonality relationship of (27), use has

been made of

Therefore, from (30), (20), (16), (6), and (4), the z-prop-

agation PWS representation of the free space dyadic

Green’s function can be identified as

!(~“(r, r’) = ‘~jjp~’) dkt
e “(k,, r)e ‘<(–k,, r’)

–2fl’

e “’(k,, r)e “<(-k,, r’)
+ –2QII

)

!(+lL(z’ – Z) ~k e’<(k,, r)e’>(–kt, r’)
t

–jcdpo –2CI’

e“<(lq, r)e’’’kf,f, r’) ‘A
+

)
—

–2QII g ~(r – r’).
k;

(32)

The PWS for the fields (110 and Ho) due to p, in free

space, and hence for the corresponding free space dyadic

Green’s function ~ 0 given above provides information on

the general form of the PWS solution for the fields Em and

Hm for the multilayered case and therefore also on the

dyadic Green’s function for the multilayered media, which

will be discussed in the following section.

IV. CONSTRUCTION OF THE MULTILAYERED DYADIC

GREEN’S FUNCTION, ~” 0

The electric dyadic Green’s function for the multilay-

ered media can be expressed as a sum of S 0 in (32) and

another contribution to account for the field scattered by

the layered media. The scattered contribution can be ex-

pressed in terms of a PWS integral resembling that for ~ 0.

Let us consider an arbitrarily oriented point dipole source

in a general multilayered media with constitutive param-

eters PM and em, as shown in Fig. 1. The source is located

in region (0) with constitutive parameters p. and ~o. In

order to find the explicit value of the fields in each region,

one can write the field quantities as the superposition of

the four traveling waves (two oppositely traveling waves

for each mode) with unknown coefficients and then solve

for the unknown coefficients by enforcing the continuity

of tangential electromagnetic fields quantities at each in-

terface, [7], [8], [21]. However, we pursue another ap-

proach, which provides a useful physical interpretation

for the dyadic Green’s function. From (21) and (22), one

can see that the continuity of the tangential field quantities

at the interface m imply

and

These boundary conditions are analogous to the continu-

ity of the current and voltage at each discontinuity of a

piecewise uniform transmission line for which the char-

acteristic impedance (and the wave number) is defined in

each layer as, [6], [9]
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where prime (‘) and double prime (”) are associated with

TM, and TEZ cases respectively, and Km = m, is

the wave number in the &direction.

The field quantities in region m can be expressed as a

superposition of known continuous solenoidal eigenfunc-

tions that propagate in If-direction with the unknown

spectral weights, am, [9]

where R: (0) = R: e 7j2K”z”, R~5 and R~Z are the TM,

and TE effective reflection coefficients at the interfaces

(m, m + 1) and (m, m – 1) for (>) and (<), respectively

[7], [8], [18], [19], [21]. As discussed in the Appendix,

the effective reflection coefficient R; for region m, is a

function of reflection coefficients of all successive layers,

(i.e., m + l,m + 2,m ~ 3, “ “ “ ,; (~~~))ofthemul-”

tilayered media, (in particular see (A 13) and (A14)). Also

the modal coefficients a ~ of region m, and a ~ of region

n on either side of the source are related via the effective

transmission coefficient, ‘1’ =m, n J as iS evident from the
piece-wise transmission line theory discussed in the Ap-

pendix. In view of (All), (A12), (A16), (21) and (22),

one will have2

\ for TE (“) case.

Hence, one only needs to find the modal coefficients

a ~z, and a ~ a in region O, in order to completely specify

the fields in all regions. Specifying (36) for region O (i.e.,

m = O) and invoking the Lorentz reciprocity theorem to

the pair of fields (E5, H~ ) and a set of source free test

fields (8 ~, W. ~ ) in the region VO, bounded by the planar

surfaces of S< and S>, slightly below and above the

source respectively as shown in Fig. (1), we get

!!
ds”(E~xX~–8~xH~)

s> + s<

——
U!

du 8: “ JO

Vo

= z; “ pe. (38)

‘Note that T ~,fl is the ratio of the incident tangential electrical fields of
regions m and n; namely,

and

The solenoidal vector functions (8 ~, W ~ ) satisfy the or-

thogonality relationship on the planar surface of Sz as is

evident from (27),

!J
ds Q (8:(+Q X 3C~(Tk;) – 8~(Fkt)

S5

X 3C:(&kj)) = (gz “ f)2A a(kt – k;), (40)

with

A = 0(1 – R~(z~)R~(.z~)e-~2K@0), (41)

where do = z ~ – z; is the thickness of the slab O;

z; and z ~ are the values of z at the interfaces of region

(0) and they are specified in Fig. 1, and 0 is given in (28).

Incorporating (36) and (40) into (38) yields

g~(–k,, r’) “ p,ala. =
–2A “

(42)

The prime (’) and double prime (“) have been omitted for

convenience in (37)–(42). Hence, the electric dyadic

Green’s function for the multilayered media, S ‘>0, can

be written via (4.2), (39), (37), (36), (16) and (4) as

AA

—
~ ~(r – r’).
k.

(43)

where (S;, 3C~~) are given by (S: = e: + R; (0)e2;

W ~ = hi + R,; (0) h; ). The above expression for (j” 0

can be written more explicitly using (39), (37) and (2 l)-

(23) as
. .

G
m,o _– –gf3(r -r’) +tL(z -z’)&

k; !dkt
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. (e+]k?”r’ + R(<e+J2’0z~ e+Jk~’ r’)

kmK~
+ A’T~~o G (lij’e-Jk~ “’

+ R~>e–J2Kmzmfil<
~ e-Jk:”r)(ii~> e+Jk:”r’

+ R~<e+j~Ko~ifi~<e+Jk~”r’)]

‘!+IL(z’ –z) “; dk,

1[,e–j.mzmejKoz~ _ At! ~;;;ntlnll

2K(3

. (e-Jk; ”r+R;;,< e+J2KmZme-Jk:”r)

. (e+Jk:”r’ + R/J> e-j2K0z~e+Jk~”ro

+ A’~A~o k (A~< e-jkj .

+ R;<e+j2KmZmfi;n>e-jk; .r)

“ (n~<e+jk:”’r +R~>e-J2K0’~ nf>e+Jk:’ r’)],

(44)

where A is defined as (0/A), z;, z;, Zm are specified in

IFig. 1, and ~t= is given by

k,? = ikX + jkv ~ 2KZ; lkl’ I = k, = o.)~. (45)

and, unit vectors A”, and ii ~ are defined as

2kY – jkZ (–fkX – jkY)K, f ~?
. //n=

k,
; n;= =

ki k, “
(46)

Also note that R: = R’(z~), R; = R(z~), and R~ =

J!= (z~ ) for m a O. The physical interpretation of the pa-
rameters defined here will be discussed in the following

slection.

V. PHYSICAL INTERPRETATION OF THE DYADIC

GREEN’S FUNCTION FOR A MULTILAYERED MEDIA

In this section we will try to give some physical insight

to the dyadic Green’s function of the multilayered media

derived in the preceding section.

The double prime, (”), denotes plane waves in the PWS

representation for which the electric field is normal to the

plane of incidence, (i.e., the plane defined by the propa-
gation vector, k, and the direction normal f); thus, the

polarization of electric field vector, ii”, is given by

(47)

Likewise the prime, (’), denotes plane waves with the

electric field in the plane of incidence (with the magnetic

field normal to the plane of incidence). In this case, the

polarization of the electric field vector, ii’, is given by

= (–fkX – jkY)K ~ &:
.)2n

= $i’”uq = kk,
(48)

REGION (0) REGION (1)

Fig. 3. Directions of k:, n ~.= and n j on either side of interface (0): (m
= o, 1).

where L?’ = “M for the wave traveling in the +1 directions

as shown in Fig. 3.

The dyadic Green’s function evaluated in the region (m)

consists of the spectrum of two types of plane waves ex-

cited by the source at z = z‘ in region (0); these are the

direct (incident) plus reflected waves. The total ‘ ‘effec-

tive” incident wave at z = z~ is given by (see also (Al 1)
of the Appendix),

e–kJziA (e%” I“ + R; e@mieJk~ “ r’);

(49)

and A is the sum of the geometric series,

A=l+a+CY2+a3 +...;

~ = R~(z~)R~(z~)e–J2’o~. (50)

Physically A in (50) is the total sum of the plane waves

traveling in +2 or –2 directions which result from the

infinite number of bounces at the interfaces of slab (0),

therefore it can be viewed as the “effective” incident

wave at z = z~, as is shown geometrically in Fig. 4,

The total incident wave at z = z ~ is transmitted through

the slabs (O to m), by the effective transmission coeffi-

cients, T ~, ~ (see (A12) of the Appendix),

‘Y’~,O = (TOe-jK’d’)(T2 e-j’2d2) o . . (&* e-j’mdm), (51)

where d, is thickness of the slab (i), (for i = O to m). At
the slab m, the total field will be the superposition of the

effective incident field plus the effective reflected field

from the boundary at z = z~ as shown in Fig. 5.

Note that the ratio of kn KO/kO K,fl in the TM (’) part of

(44) is simply the ratio of the cosine of the angles that kO
and km make with the normal of the interface which is

depicted in Fig. 6, and results from the continuity of the

tangential TM electric fields at the each interface.

Although the limits of the spectral integral extend from
—m to m, the reflection and transmission coefficients, r~

and r~, for each interface and hence, the effective reflec-

tion and transmission coefficients, R~ and ‘Y’~, have an

asymptotic limit for large value of kt. Figs. 7– 10 show the
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Fig. 4. Plane waves bouncing back and forth at the interfaces of the slab (0) and its equivalent representation.

‘.>

. .
‘. .

/

-— ___ _

FUZ. 5. Physical interpretation of incident and reflected waves in the slab

m-due to the ‘point current dipole source in the slab (0)

——-
01

2%22

-————_-
m-l m m+l

Fig. 6. Direction cosines that k“ and k= make with the normal f. these
result from the continuity of the tangential TM electric field at each inter-

face; 60 = Cos- l(KO/kO), 9~ = Cos- ‘(r(H/k~).

real and imaginary parts of effective reflection and trans-

mission coefficients for one, two and three layer geome-

tries as a function of normalized k,, (with respe&t to the

free space wave number, ko), for TM and TE cases, re-

spectively. It is evident that the values of these coeffi-

cients approach certain limiting constants for large values

of k[. It can be seen from Figs. 8 and 10 that the values

of effective transmission coefficients approach zero for kt

larger than 3; physically this implies that no evanescent

wave with a large transverse wave number kr can pene-

trate through the layers. One can of course predict these

phenomena by taking the limits of the reflection and trans-

mission coefficients of (A12)–(A15) as kt goes to infinity.

That is,

R: = F:l,,>>,,n;

lim R; = lim I’; ~

for TM (’)

for TE (“)

(52)

for TM (’)

for TE (“).

(53)

As is evident from (51) for any multilayered media with

a nonzero thickness, we will have

lim T ~, ~ — o. (54)
k,+m

The numerical implication of this phenomena is that for

large values of ICt, the effective reflection and transmission

coefficients, R~ and T~, can be replaced by their associ-

ated half-space reflection and transmission coefficients, r~

and 7~. Also it is evident from Figs. 7 and 8 that for a set

of constitutive parameters and layer thicknesses, there ex-

ist some value of kt for which the denominators of effec-

tive reflection and transmission coefficients go to zero and
consequently these coefficients become singular. These

values of kf correspond to the surface wave modes, and

the associated residues are proportional to the fields of

these modes where are launched by the impressed source

[6], [20]. Also, the sharp variation of these effective re-

flection and transmission coefficients, at the various points
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in these Figures result from an abrupt phase change of the

associated half-space reflection and transmission coeffi-

cients at the vicinity of k, = kw, for (m = O, 1, 2, or 3).

VI. CONCLUSION

A relatively simple and systematic approach is taken to

drive the dyadic Green’s function for a multilayered di-

electric/magnetic media via the two (f)-directed solenoi-

dal eigenfunctions, and the utilization of the Lorentz re-

ciprocity theorem such that it provides a useful physical

interpretation. It is shown that the Green’s dyadic can be

written in terms of the spectrum of plane waves (TE and

TM) which resemble the response of a source excited

multiconnected piece-wise uniform transmission line. The

concept of effective reflection and transmission coeffi-

cients is discussed, and the physical interpretation of the

individual terms along with the limiting behavior of some

of these terms is given.

APPENDIX

PIECEWISE UNIFORM TRANSMISSION LINE THEORY

In this Appendix we briefly review the piecewise uni-

form transmission line theory. As explained earlier, the z

and z‘ functional dependence of the field quantities ex-

cited by a electric point dipole current source in a general

multilayered media is analogous to the problem of source

excitation of a piecewise uniform transmission line. The

voltage and current on a source free uniform transmission

line with wave number Km and characteristic impedance

q~ can be expressed as

‘m(~)= K.c,~(zo)(e ‘j’m(z- ‘0) + RJ-@j”m(~ - zo),

~ (z) = Knc,m(zo) - (--,.)
m

(e l~m.
– Rm(zo)e j“’n(c‘:”)), (Al)

V.

,,,C,JZO) and &(zO) are the incident voltage andwhere ~

reflection coefficient respectively at point z = Z.. The re-

flection coefficient, l?~(z), and the impedance, Z~(z), at a

point z are related by

‘m(~) – ‘VW,.
Rm(z) =

~n(z)

-z@ + ?????‘
Z,n(z) = —

L(z) “
(A2)

It is desired to derive some expressions for a piecewise

uniform transmission line that relate the voltages and cur-

rents at a pair of points on the line which are located in

different sections. Let us first consider a simple configu-

ration shown in Fig. 11 which consists of two semi-infi-

nite transmission lines corresponding to regions (n – 1)

and (n + 1), connected with a finite line, d,, = Z. – Z._,,

corresponding to region (n). For a known incident voltage

in region (n – 1), it is of interest to find voltages and

currents in different sections of the transmission line. For

doing so, one needs to find the incident voltage and re-

each region. The reflection coefficient at z~ _ 1 in region (n

– 1) can be written as

-w-l) – V.-l
Rn-, =

z(zn_J + qn_l’
(A3)

where

1 + Rn ~ ‘Jhndn

Z(Z.: [) = 7. ~ _ Rne -j2K.dn ; Rn = ‘n+’ - ‘“. (A4)
Vn+l + 7.

After incorporating (A4) into (A3), the reflection coeff-

icient Rn– 1 can be expressed as

17n_, + Rne ‘J2Kndn
Rn_l = “ m_, =

‘V. – ‘Vn-l

1 + I’_ ,Rne ‘j2K’’d”’ qn+71n_1”

(A5)

Expression Rn_ ~ in (A5) is called “effective” reflection

coefficient for region (n – 1). It is a coefficient that relates

all interactions from the presence of other regions to the

incident voltage in region (n – 1). One can also relate the

incident voltages of regions (n – 1) and (n) in the follow-

ing form:

V._l(Z. _J = K..,n-l (z.- I)(1 + %-l(zr~- 1))

= Vi..,.(zn -Ml + Rne -J2Kndn)), (A6)

hence; ~.,, .(zn _ ~) can be expressed in terms of

~j~~,~_ l(z~ _ 1) as

~.,,.(z.- 1) = T.- l(z. - l) fi.c,.- l(Z,, - 1), (A7)

where

(A8)

After substituting (A5) for Rn_ ~ in (AS), T,,_ ~can be ex-

pressed as

Tn_l =
Tn–l

. ~n-l = 1 +rrl–l.
1 + I’n _ ,Rne ‘J2’ndn’

(A9)

Tn- ~ in (A9) is called “effective” transmission coeff-

icient. It is a coefficient that relates the incident wave of

region (n – 1) to the incident wave of region (n). There-

fore, the voltage at a point z in region (n) can be expressed

in terms of the incident voltage at point ZO in region (n –

1) by incorporating (A7) into (Al): hence,

~n(z) = ~.,tc ~ _ ~(zo)e ‘~”” ‘(’n -‘ - ‘oJT’ _, e-j’”dn

. (e ‘./dZ - 2.) + R e +JKn(, - ,.))
n (A1O)

The incident voltage in region (n + 1) can likewise be

found in terms of the voltage in region (n).

This formulation can be generalized to the total of (iV

+ 2) number of finite length transmission lines, (O’;’ and

(~ + l)’k regions are semi-infinite), with the character-

istic impedance and wavenumber of rl~ and K,n, respec-

tively for (O < m s N + 1), as shown in Fig. 12. The
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Fig. 12. Generalpiecewiseunifomtransmission lineiincident wavestravel in +&direction.

voltage and current at point z in region (m), as a function in which the incident field travels in ( –f)-direction, pro-

of the incident voltage at point z = O in region (0) can be vialed Km + – Km and (m+) ~ (WZ~ ). Hence; the effective
written as reflection and transmission coefficients for the geometry

J’m(z) = V~c,o(0)e ‘jKOZO q. ; ~ e –jfh(z – h)
,(

depicted in Fig. 13 are respectively defined as - -

+ R; ~ +jKm(Z – Z.))
> r; + R:_le-J2’m-ld~-,

R; (Zm)l =

V:c,o(o) ~ _;KmT > (e _jKm(: _ ,m)

1 + r~R~_,e-j~~~-ldm_,;

Ire(z) = m,O
Vm ~;=~m-l–~m

— R: e +jKm(Z- h)
)9 (All) qm-1 + ‘Vm’

(A14)

where, ‘1’~, o and R ~ are respectively defined as
T: (.Z,n)=

T:
m—1

Ti,o = ~ T~(zi)e-jut+’d,+i;
1 + ~~R~_le–j2x~-ldm-t;

i=o r; = l+ r;. (A15)

T: (z~) =
‘Ti>

1 + 1’~R~+le-j2K’+ ’d’+”
(A12) and

and

m+]

‘~,()= n Tl<(zi)e-j’l-ldt-l.i=o
(A16)

r: + R:+ ,e–j2%.+ld~+,
R;(z.) =

1 + 1’~R~+le-j2Km+ ’din+”
(A13) Note that in this case the subscript m of the indices of the

layers in Fig. 13 is monotonically decreasing; (i.e., m s

where Ri+ 1 and T: can be calculated by successive ap- 0; zm-~ < Zm).
placations of (A5) and (A9), starting from region IY. The It is evident from the above analysis that once the in-

superscript ( > ) explicitly used to imply that the incident cident waves on either side of the source in region (0) are

field travels in (+.2)-direction. known, the voltages and currents of other regions of the

All equations derived here are applicable for the case transmission line will be specified.
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