128 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 1, JANUARY 1992

On The Dyadic Green’s Function For a Planar
Multilayered Dielectric/Magnetic Media

Sina Barkeshli, Member, IEEE, and P. H. Pathak, Fellow, IEEE

Abstract—A complete plane wave spectral eigenfunction ex-
pansion of the electric dyadic Green’s function for a planar
multilayered dielectric/magnetic media is given in terms of a
pair of the (%)-propagating solenoidal eigenfunctions, where
() is normal to the interface, and it is developed via a utiliza-
tion of the Lorentz reciprocity theorem. This expansion also
contains an explicit dyadic delta function term which is re-
quired for completeness at the source point. Some useful con-
cepts such as the effective plane wave reflection and transmis-
sion coefficients are employed in the present spectral domain
eigenfunction expansion. The salient features of this Green’s
function are also described along with a physical interpreta-
tion.

I. INTRODUCTION

COMPLETE plane wave spectral (PWS) type eigen-
function expansion of the electric dyadic Green’s
function for the planar multilayered dielectric/magnetic
media is given in this paper in terms of a pair of the (§)-
directed solenoidal eigenfunctions, where (2) is normal to
the interface, and it is developed via a utilization of the
Lorentz reciprocity theorem. This expansion also con-
tains an explicit dyadic delta function term which is re-
quired for making the representation complete at the
source point. The geometry of this problem is shown in
Fig. 1. The electrical parameters in each of the layers are
assumed to be homogeneous and isotropic. It is shown
that the field at a given point consists of four distinct wave
types (two for each TE and TM type) caused by the pres-
ence of the multilayered media. This dyadic Green’s
function is useful in many problems dealing with the strat-
ified media, i.e., scattering from buried objects in the lay-
ered earth, or in the design of high performance finite
phased arrays in multilayered dielectric/magnetic envi-
ronment. Since the dyadic Green’s function derived here
is for an arbitrarily oriented current point source, it can
also be utilized for the applications where the current ele-
ments are obliquely rather than horizontally or vertically
oriented with respect to the planar interfaces. ‘
The plane wave spectrum (PWS) integral representa-
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Fig. 1. Electric point current dipole source in a multi-layered dielectric/
magnetic media. Also the planar surfaces S. and S. slightly above and
below the source are shown.

tion of the dyadic Green’s function for this canonical
problem may be constructed in several ways. One of the
most common approaches is to express the Green’s func-
tion in terms of a magnetic vector potential [1]-[5],
whereas another approach is to construct the Green’s
function from a set of appropriate electric and magnetic
vector potentials [6]-[10], [21]. In the former case, the
magnetic vector potential in general has components
which are parallel and normal to the interface even if the
electric point current source does not possess a compo-
nent which is normal to the interface. In the other ap-
proach, the magnetic and electric vector potentials are
generally chosen so that they are both normal to the in-
terface. If the electric point current source is chosen nor-
mal to the interface, then the two approaches become
identical since only a single normally directed magnetic
vector potential suffices in this case. This is related to the
fact that the normally oriented current moment only ex-
cites the TM waves (with respect to the (8)-coordinate di-
rection), whereas the electric current moment parallel to
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the interface excites both TM and TE waves. Therefore
the total electromagnetic waves must be constructed either
with the magnetic vector potential which can produce both
TM and TE waves (in this case magnetic vector potential
must have components normal and parallel to the inter-
face) in order to satisfy the appropriate boundary condi-
tions, or with the magnetic and electric vector potentials
which are both normal to the interface (since a normally
directed magnetic vector potential produces TM waves
and a normally directed electric vector potential produces
TE waves). One of the main advantages of the latter for-
mulation is that the boundary conditions associated with
the differential operators for the two different types of
vector potentials can be decoupled. In the case of a choice
of a single type of magnetic vector potential containing
both a vertical (£) and a horizontal (transverse) to (£) com-
ponent, the transverse component (parallel to interface)
of that magnetic vector potential will contribute to both
TE and TM waves; therefore, the boundary conditions for
normal and transverse potential components will be cou-
pled. This disadvantage will be more pronounced if one
deals with the stratified or multilayer dielectric/magnetic
media, for which the number of coupled boundary con-
ditions increase, thereby complicating the analysis. Re-
cently Bagby and Nyquist [11], derived a formal repre-
sentation of the dyadic Green’s function for the
multilayered media in terms of the magnetic vector poten-
tial [1], [4], which they specialized for the cases of mi-
crostrip and optical circuit structures. Since only the mag-
netic vector potential is used, the boundary conditions for
the TM and TE waves are coupled in [11], hence, the
natural distinction between the two is lost. Also the dyadic
delta function term, which makes the representation com-
plete at the source point, was not explicitly extracted in
[11]; Viola and Nyquist [12], slightly modified that anal-
ysis later to properly extract the dyadic delta function
term. In the present work, we have derived a complete
eigenfunction expansion of the dyadic Green’s function
for the planar multilayered dielectric/magnetic media us-
ing the (2)-directed solenoidal electric and magnetic (TM
and TE) eigenfunctions. We have used continuous eigen-
modes propagating along a ‘‘preferred’’ (£)-direction. We
have also employed the orthogonality properties of the ei-
genmodes over an opén planar surface [6] transverse to
the direction of the propagation, (£) to construct our
Green’s dyadic. This is a generalization of the discrete
eigenvalues and eigenmodes, that is usually used in the
guided wave theory [13]. Hence, unlike the work reported
previously, this analysis retains the connection between
the closed (waveguides) and open (planar multilayer) type
structure, which is usually lost in the formal Fourier
transform method. In addition, because those eigenvalues
and eigenmodes are only a function of the geometry of
structure, and not the excitation [6], [13], the natural (TM
and TE) eigenmodes reveal the physical behavior of the
fields in the multi-layered dielectric/magnetic media. Fi-
nally, we have employed a method that utilizes only the
solenoidal eigenfunctions [14], and hence, the dyadic
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delta function term at the source point is included explic-
itly as a correction to the general solenoidal eigenfunction
expansion which is valid outside the source point. The
electric dyadic Green’s components given in this work ap-
pear to be closely related to those electric field compo-
nents which have been derived by Kong [7], [8], and Chew
[21] utilizing the usual boundary conditions at each of the
interfaces and the proper condition at the source point. As
indicated above, the procedure used here is somewhat dif-
ferent, in that we have utilized the orthogonality of con-
tinuous eigenmodes at the planar interfaces along with the
Lorentz reciprocity theorem to drive the complete eigen-
function expansion of the electric dyadic Green’s function
which contains a physical interpretation.

The format of the paper is as follows. In Section II, we
outline the procedure required to derive the complete ei-
genfunction expansion of the dyadic Green’s function for
the multilayered media, §™°, in terms of only the sole-
noidal eigenfunctions. In Section III, we start with the un-
bounded case, in which the point source radiates with no
interface present, and construct the corresponding dyadic
Green’s function, 90, in terms of an integral over the
spectra of plane waves that constitute the continuous ei-
genfunction expansion in which the eigenfunctions are
guided in the preferred Z-coordinate direction, using the
procedure described in Section II. This is essentially the
Z-propagation (plane wave spectrum) representation of the
free space dyadic Green’s function which is usually rep-
resented by the discrete spherical vector wave type radi-
ally propagating eigenfunction expansion. In Section IV,
the dyadic Green’s function for the multilayered media,
G™?Y, is then constructed from the principle of the super-
position, which involves the sum of the fields of firstly
the source in free space (or the free space Green’s func-
tion % and secondly the fields scattered by the layered
media. Section V deals with the physical interpretation of
the dyadic Green’s function and numerical results. Con-
clusions and discussions are presented in Section VI.

II. FORMULATION OF §™° IN TERMS OF THE

SoLENOIDAL EIGENFUNCTIONS

In this section we outline a general procedure described
by Pathak, [14], which can also be employed to find a
complete eigenfunction expansion of the electric field in
the multilayered media, E,,, and its corresponding dyadic
analog G™° in terms of only the solenoidal eigenfunc-
tions.

The usual Maxwell curl equations for the electric and
magnetic fields E,, and H,, within any mth layer (see Fig.
1), respectively, are given by

V X By = —jwpnHy; V X Hy, = joecnEy + Jo. (D
An ¢’ time dependence is assumed and suppressed in
(1), and as usual, p,, and ¢, are the permeability and per- -
mittivity of the medium (m), and J, is the impressed elec-
tric current source. If the electric current density Jg is
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taken to be a point source of strength p, at r = r' in the
region (0); then,

Jor) = p.o(r — 1’). 2)

Before proceeding further, it is important to relate the
dyadic Green’s function to the electric field due to J, as
[15]

E,(r) = —jouo SSS GmOr, ) - Jor"y dv”, (3

where G™¢ is the multilayered electric dyadic Green’s
function, and v contains the source region. If Jo(r") is an
arbitrarily oriented point current source of the strength p,
given in (2), then electric field may be viewed as a distri-
bution; namely,

E, () = —jopoS§"°r, r') - pe. 4)

Let the solenoidal part of the eigenfunction expansion of
the electric field E,,, which is valid for z # z' (and hence
for r # r'), be denoted by E;,. The field E;, is obtained
in terms of only the solenoidal eigenfunctions because the
electric field has zero divergence for z # z’. The z-prop-
agating solenoidal eigenfunction expansion of E, can be

expressed as
) E,, z>2z
E, =1 " , 3)
E;, z<z.

Alternatively, E;, in (5) can be written as
E;, = Uz — z)E,; + UGE' — 2E,, (6)

where the Heaviside unit step function U(§) is defined by,

s _{1, £>0
()_O, £<05

and = means the fields for z = z'. The entire space con-
sists of two regions z > 7' and z < z'; z = 7’ is the plane
S (normal to Z-axis) containing the source, J, = p, 8(p —
p’) 6(z — z'), in region (0) of Fig. 1. It is noted that (u,,
€p) correspond to the constitutive parameters of the me-
dium in region (0); in general, (p, €,) are different from
those for free space. Consider next the magnetic field H,,
due to Jo; in particular making use of (5), yields

VXEg = —jopnHz; VX Hy =joe,Ey, (7)

where H, is the value of the magnetic field H,, in the
region (m), for z = z'. It is clear from (7) that the mag-
netic field H,> is known once E= is known. The fields
H, and H,, must satisfy the proper source condition at
r = r'. In order to impose the boundaty condition at the
source point, r = r’, the volume current density J, must
be expressed in terms of a distribution p,, corresponding
to a “‘surface’” current density at z = z’ (i.e., on the sur-
face S); thus

Jo=p.o(p—p)oz—z)=P,o(r—r)
= Pes 6(z — 2'). ®)

Now the discontinuity of the tangential magnetic field in
the region (0), across S (at z = z’) must be equal to the
surface current density at S; namely,

ix Hy - HF) =1, - p,, 9)

where I, denotes the transverse part of the unit dyad with
respect to Z,

I=1+3% I =%+ yy (10)
It is clear that (9) is valid only at z = z’, so it can be
expressed as

X HF —H) 8z —z) =1 p, 8z —2z"), (1D

it follows directly‘ from (8) that the above equation be-
comes

EXH; —HS) 8¢z —z2) =1L p,or — 1),
or more generally,

EXH; —H) 6@ ~2) =1 pd¢r—r"). (12

This is the expression for the condition on H,, at the source
point, and it directly indicates the appropriate addition to
E,, at the source point which is required to yield the com-
plete expansion of E,,. It is important to note that since
the discontiruity condition in (12) relates H,, to H,
across the source point, one only needs to know
H, and H,; to completely specify H,, due to the source
Jo = p. 6(r — r’); thus

H, = Uz —zHH,; + U - 2H,. (13)

The E,, of (6) can now be readily found by employing
(7), and using the relation based on distribution theory,
[16],

VX[HZU+z F )] = Wtz F z)V x HZ

+ 2 X HZ 8z — 2. (14)

From (7), (12) and (14), if follows that
E'—LVXH——I—f- 5( ' 15
m jwem m j(_OEO t pe r r )' ( )

The precise relationship between the complete field E,, of
(4) and the incomplete field E}, of (15) can now be written
by using (1) and (10), [14],
! 4 I . ﬁ !
Em(l‘, r ) = Em(r, r ) — JWho l:_?s(r - r )} * Pes
0

E,

M|z =+

= E’

miz#'"

(16)

The Green’s dyadic G™° can be inferred from (16) by
comparison with (4). Thus,

2

m ! =m 14 zzA 1
g%, vy =", ') — 20—, (a7
0
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with
E)(r,r') = —jopeg™%r, ") - p.. (18)

From the above discussion, it is clear that one can also
construct the complete free space dyadic Green’s func-
tion, G, in terms of the ‘‘z-propagating’’ solenoidal ei-
genfunctions which will be obtained in the following sec-
tion.

III. CoNsTRUCTION OF THE FREE SPACE DyaDbic
GreeN’s Funcrion, G°

In this section, the procedure outlined in the previous
section is applied to obtain an explicit expansion for G°
which is associated with an electric point current source,
Jo = p. 6(r — r’), which radiates in an unbounded me-
dium with parameter (ug, €o) which are the same as in
region (0) with no interface present. In the following sec-
tion, the procedure developed here will be extended to
explicitly obtain the dyadic Green’s function g™ of (17)
for the multilayered media. The first step in the procedure
for obtaining the free space electric field E, and its cor-
responding G° involves the construction of a z-propagat-
ing PWS solenoidal eigenfunction expansion of E} which
is complete if z + z'.

The geometry of the problem dealing with a homoge-
neous (free) space with constitutive parameters (ug, €)
excited by Jo = p, 6(r — r’) is illustrated in Fig. 2. The
solenoidal eigenfunctions for this problem are chosen to
propagate in the preferred +Z-coordinate direction. The
source point at r = r' lies in the plane Satz = z’ as in
Fig. 2. Let E= and H= denote the continuous PWS so-
lenoidal vector wave function expansions for the electric
and magnetic fields, due to Jy in the absence of the inter-
face; thus,

Ei = E,z + Eui; Hi = Hri + H//E’ (19)
and [6],
Ez — Sdkt (alieri + auzenz);
Hi — Sdkt (a;zh/: + anzhnz)’ (20)

where prime (') and double prime (") refer to TM and TE
wave components with respect to the preferred Z-coordi-
nate direction, respectively, and k' and e” can be derived
from the solenoidal magnetic and electric 2-directed vec-
tor potentials, (IT’, I1"), respectively [6], [13],

h'Z = %2 x V,II'%;

. .1 _ 9 1

e’ = +—V,—II'% £ — 4V2II'%, (21)
Jjweg 02 Jweg
and
enz — 2 X thnz;
= 1 =
ez =Ly lge - Lavines @
Jope 0z Jopo
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where, V, is the transverse (to 2) part of the V operator.
Electric and magnetic potentials, II" and II”, which can
also be viewed as a pair of Debye potentials [5], [17] sat-
isfy the well known Helmholtz equation; their associated
Z-propagating eigenfunctions can be expressed as

- 1 ) _
=) = é;exp[_J(kr g = A (¥4)

= 1 . _
n=(-k) = EGXP[*J(—’(: Pk (23)
where prime (') and double prime (”) have been omitted
for convenience; k;, kg, and p are respectively defined as

k = %k, + Sk k= vk - kg Ko = Vki — k%, (24)
and
(25)

In the above formulation, the variable k, (i.e., £k, + yk,;
dk, = dk, dk,) are the continuous eigenvalues which span
over the entire spectral domain (—o < k, < o0; and —oo
< k, < o). The unknown spectral amplitudes a’= and
a'= of (20) associated with the TM and TE modal fields
respectively, are found from an application of the Lorentz
reciprocity theorem to the pair of the fields (E =, H=) of
(20) and the source free solenoidal vector wavefunctions
(e®, k) in the region V,, bounded by planar surfaces S-
and S, which are slightly above and below the surface S
of Fig. 2, respectively, [13], [14]":

P=fx+Jy; r=79+4; ki= o’ue.

H ds - (EZ X h= — e= X H?)

Ss + 8«
Sggdveg - Jo

Vo
=e® - p,. 26)

The solenoidal vector wavefunctions ¢ = and k= satisfy
the orthogonality condition on the surface S. and S.;
namely,

SS ds - (e<(1k) X h” (Fk?))

Sz

= H ds - (—e”(+k) X R<(Fk))
Sz
= (= - DQ ok, — k), 27)
where € can be ' or Q" for the TM and TE cases, re-
spectively; thus,
k2

"o

Mo

Q =Ky Q= (28)

'We apply the Lorentz reciprocity theorem to the volume ¥, here with
the radiation condition implied as p — oo.
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Fig. 2. Imaginary plane S, parallel to xy plane, passing through the source at z = z' in the free space. Also plotted are planar
surfaces S, and S_ slightly above and below the source.

with the unit vector §. directed along the outward normal
to the surface S. = + z; and »j and 5§ are associated with
the TM and TE wave impedances for region (0) and de-
fined as

, _ Ko, n _ WHo
No = > Mo = .

Weg Ko

29)

Incorporating (20) and (27) into (26) yields

= e§(—kta r’) * P - Py

== ; r=p"' +3z’. (30
a o0 ;or'=p 2. (30
In deriving the orthogonality relationship of (27), use has
been made of

_1_ S dfe—ﬂ(%—i’) — 5(5 - S’) (31)
27[' —o0

Therefore, from (30), (20), (16), (6), and (4), the z-prop-
agation PWS representation of the free space dyadic
Green’s function can be identified as

Uiz — z") S ek, re'<(—k, r"
0 N — t t
9 (l‘, r ) _jwllro dkt < _291
+ e”>(kt9 r)e "<(—kzs I'/)
-2Q"
LUG ~2) Sdk e'“(k, ne'>(=k, r"
—Joro ’ —20'
e”<(kta r)e ”>(_kta I',) &
+ _ !
o0 K2 o(r — r')

(32)

The PWS for the fields (Ey and H,) due to p, in free
space, and hence for the corresponding free space dyadic
Green’s function G° given above provides information on
the general form of the PWS solution for the fields E,, and
H,, for the multilayered case and therefore also on the

dyadic Green’s function for the multilayered media, which
will be discussed in the following section.

IV. CONSTRUCTION OF THE MULTILAYERED DYADIC
GRreeN’s Funcrion, §™°

The electric dyadic Green’s function for the multilay-
ered media can be expressed as a sum of G in (32) and
another contribution to account for the field scattered by
the layered media. The scattered contribution can be ex-
pressed in terms of a PWS integral resembling that for G°.
Let us consider an arbitrarily oriented point dipole source
in a general multilayered media with constitutive param-
eters u,, and ¢,,, as shown in Fig. 1. The source is located
in region (0) with constitutive parameters p, and ;. In
order to find the explicit value of the fields in each region,
one can write the field quantities as the superposition of
the four traveling waves (two oppositely traveling waves
for each mode) with unknown coeflicients and then solve
for the unknown coefficients by enforcing the continuity
of tangential electromagnetic fields quantities at each in-
terface, [7], [8], [21]. However, we pursue another ap-
proach, which provides a useful physical interpretation
for the dyadic Green’s function. From (21) and (22), one
can see that the continuity of the tangential field quantities
at the interface m imply

1 4 10
o, =1H,; oy =—=1I,, (33
€n—1 02 €n 02
and
1 o 1 o
Oy =1y I, =—=0; G4
Pm—1 0z Hm 0z

These boundary conditions are analogous to the continu-
ity of the current and voltage at each discontinuity of a
piecewise uniform transmission line for which the char-
acteristic impedance (and the wave number) is defined in
each layer as, [6], [9]

(35)
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where prime (') and double prime (") are associated with
TM, and TE, cases respectively, and «,, = vkZ, — k2, is
the wave number in the 2-direction.

The field quantities in region m can be expressed as a
superposition of known continuous solenoidal eigenfunc-
tions that propagate in +Z-direction with the unknown
spectral weights, a,,, [9]

E; = Sdk, @n(en™ + R,Z(0e;”
+ a,%(en= + R,;=(0)e,),
Hy = Sdkt @u (k™ + R;E Q)R

+ap=(h,= + R.= Ok, %), (36)

where RZ(0) = RZ e ¥/ R!Z= and R!.® are the TM,
and TE effective reflection coeflicients at the interfaces
(m, m + 1) and (m, m — 1) for (>) and (<), respectively
[71, [8], [18], [19], [21]. As discussed in the Appendix,
the effective reflection coefficient Rz for region m, is a
function of reflection coefficients of all successive layers,

Ge,m+1l,m+2,m+3, -+ ;L)) of the mul-

tilayered media, (in particular see (A13) and (A14)). Also
the modal coefficients @, of region m, and a> of region
n on either side of the source are related via the effective
transmission coefficient, T, ,, as is evident from the
piece-wise transmission line theory discussed in the Ap-
pendix. In view of (All), (A12), (A16), (21) and (22),

one will have? 7
a; = ¢ F j(knzn "KmZm)erinanz .

>

iz _ M oz
O, = —,T

m.ns>

Nm
where for TM (') case 37)
0,5 =13,

for TE (") case.

Hence, one only needs to find the modal coefficients
a§®, and a{® in region 0, in order to completely specify
the fields in all regions. Specifying (36) for region 0 (i.e.,
m = 0) and invoking the Lorentz reciprocity theorem to
the pair of fields (E§, H§) and a set of source free test
fields (€5, 3C§) in the region V,, bounded by the planar
surfaces of S. and S., slightly below and above the
source respectively as shown in Fig. (1), we get

H ds - (E§ X 3§ — &5 X HY)

S> + S«

g

=8

degog ’Jo

S —y

S

* Pe- (38)

Note that Tz, is the ratio of the incident tangential electrical fields of
regions m and n; namely,

a,f(ﬁ X e,f) — e:Fj(KnZn*KmZm)Tf‘”a”z(i X ef)
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where (8§, 3C§’) are given by
85 =ef + R500)eg; X5 =hi +R

VA
o~
N

B
SN

and
RE©) = RE (25 )et/ ™08, (39)

The solenoidal vector functions (68§, JC§) satisfy the or-
thogonality relationship on the planar surface of S, as is
evident from (27),

[V as- @y x sezrn - e3xm)
Sz

X 3o (xk]) = (8= * 22A 8k, — k]),  (40)
with

A = Q1 — R§ @RS (zg)e 2o, @1

where dy = zq — z5 is the thickness of the slab 0;
zy and zq are the values of z at the interfaces of region
(0) and they are specified in Fig. 1, and @ is given in (28).
Incorporating (36) and (40) into (38) yields
aZ = 80§(_kn I'/) * Pe

0 —2A '

The prime (') and double prime (") have been omitted for
convenience in (37)-(42). Hence, the electric dyadic

Green’s function for the multilayered media, ¢™0 can
be written via (42), (39), (37), (36), (16) and (4) as

g™ %r, r') = (IJ-(Z"" 2 S dk,
—JWio

. <e,>0 8;n>(kt9 r)g(,)<(_kt, r’)

(42)

—2A'
&k, NEF<(—k;, r")
—2A
Lt 2 S dk,
—JWho
. ' < g;n<(krs r)8(’)>(-kt, r’)
e ~2A’

8k, NEG” (—Kiy 1)
—27"

+ 6,5

n<
+ em,O

2

—~ 52 8r — r"). (43)
ko

where (§, 3CZ) are given by (8§, = e, + R (O)e,.;
3ZE =h> + RZ(0)hS). The above expression for G™°

‘can be written more explicitly using (39), (37) and (21)-

(23) as

gm0 = —%a(r —r) + U@ - z')ﬁ2 S dk,
0

iz oy L .
. eijZme JKOZg p; [A”T,’ﬁ)n”n”
0

_'>. — _'<~
. (e -k r+Rr/r;l>e 12xmzme L r)
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> o <
. (e+Jk0 oy Rg<e+121<040 e+]k0 r)

—jk> or

k Ko
AT () e
kOKm

_ R k<. . >,
+ Rr,n>e JZKmZmn’;fe JK,, ')(n(’)>e+’k0, r

k07T A <
+ R6<e+]-xo~o Il(/)< e+]k0 r)]

_ |

- e jkmzmeijo 2 [A”Tllrll?)ﬁ”n”
Kg ’

kg - r 1<+ 2%mim gk P

-(efm + R! e]munejm )

m

<. s + >
. (e+Jk0 oy R6/>e J2K02g e+]k0 r)

k Ko
AT
kOKm

4 .
+ ern< e+]2xm~mn'/n>e -k, r)

_'<.
n;n<e ]km r

g < et >
c @y et T 4 Ry e 0% iy~ et M,

where A is defined as (@/A), z3, 25, Z. are specified in
Fig. 1, and k* is given by

ki: = .ka + yAkV + 2/(,; lklz I = ki = WVU;E;. (45)
and, unit vectors A", and /] are defined as
£k, — jk, (k= Pk, + 2K2
0= S AT = : - 46)
k; kik,

Also note that Ry = R7(z¢ ), Ry = R(zy ), and RZ =
R=(z,) for m = 0. The physical interpretation of the pa-
rameters defined here will be discussed in the following
section.

V. PHYSICAL INTERPRETATION OF THE DYADIC
GREEN’S FUNCTION FOR A MULTILAYERED MEDIA

In this section we will try to give some physical insight
to the dyadic Green’s function of the multilayered media
derived in the preceding section.

The double prime, ("), denotes plane waves in the PWS
representation for which the electric field is normal to the
plane of incidence, (i.e., the plane defined by the propa-
gation vector, k, and the direction normal £); thus, the
polarization of electric field vector, A", is given by

g xk_ ®k Pk
|z X K| k,
Likewise the prime, ('), denotes plane waves with the
electric field in the plane of incidence (with the magnetic

field normal to the plane of incidence). In this case, the
polarization of the electric field vector, A, is given by

a1

n

@7

A’ X k= _ (_ka - yky)’( + ﬁk?
A" x k| kk,

”l‘l<= i

(48)

REGION (1)

REGION (0)

Fig. 3. Directions of k2, n,= and n,, on either side of interface (0); (n
=0, 1).

where /' is for the wave traveling in the +Z directions
as shown in Fig. 3.

The dyadic Green’s function evaluated in the region (m)
consists of the spectrum of two types of plane waves ex-
cited by the source at z = z' in region (0); these are the
direct (incident) plus reflected waves. The total “‘effec-
tive’” incident wave at z = zg is given by (see also (A11)
of the Appendix),

e+ 2> . - <,
ejKOZoA(e]kO r +R0<e]2:<ozoe]k0 r);

1

A =T Ry RG e om “9)
and A is the sum of the geometric series,

A=l+oz+a2+oz3+"';

a = R§ (2R (z5)e 0. (50)

Physically A in (50) is the total sum of the plane waves
traveling in +£ or —£ directions which result from the
infinite number of bounces at the interfaces of slab (0),
therefore it can be viewed as the ‘‘effective’’ incident
wave at z = zg, as is shown geometrically in Fig. 4.

The total incident wave at z = z¢ is transmitted through
the slabs (0 to m), by the effective transmission coeffi-
cients, T, ¢ (see (A12) of the Appendix),

Too = (Toe ™) (Tye %) - o (T,,_ e *mdm),  (51)

where d, is thickness of the slab (), (fori = 0 to m). At
the slab m, the total field will be the superposition of the
effective incident field plus the effective reflected field
from the boundary at z = z,, as shown in Fig. 5.

Note that the ratio of k,,xy/kyx,, in the TM (') part of
(44) is simply the ratio of the cosine of the angles that k,
and k,, make with the normal of the interface which is
depicted in Fig. 6, and results from the continuity of the
tangential TM electric fields at the each interface.

Although the limits of the spectral integral extend from
— oo to o, the reflection and transmission coefficients, T,
and 7, for each interface and hence, the effective reflec-
tion and transmission coefficients, R,, and T,,, have an
asymptotic limit for large value of k,. Figs. 7-10 show the



BARKESHLI AND PATHAK: ON THE DYADIC GREEN'S FUNCTION

LA A A
i

/[ b

REGION(-1) REGION(O) REGION(!)

135

T
L

J T =

REGION(-1) REGION(O) REGION (1)

Fig. 4. Plane waves bouncing back and forth at the interfaces of the slab (0) and its equivalent representation.

Wi

ZZ

-2 -1 0

0

Fig. 5. Physical interpretation of incident and reflected waves in the slab
m due to the point current dipole source in the slab (0).

NNV
L&

Fig. 6. Direction cosines that k, and k,, make with the normal Z, these
result from the continuity of the tangential TM electric field at each inter-
face; 0y = cos™ (ko /ko)s O, = c08™ (K, /k,).

real and imaginary parts of effective reflection and trans-
mission coeflicients for one, two and three layer geome-
tries as a function of normalized k,, (with respett to the
free space wave number, ky), for TM and TE cases, re-
spectively. It is evident that the values of these coeffi-
cients approach certain limiting constants for large values
of k,. It can be seen from Figs. 8 and 10 that the values
of effective transmission coefficients approach zero for k,
larger than 3; physically this implies that no evanescent
wave with a large transverse wave number &, can pene-
trate through the layers. One can of course predict these

phenomena by taking the limits of the reflection and trans-
mission coeflicients of (A12)-(A15) as &, goes to infinity.
That is,

= =
= 1= .
Rm ~ T Mk, > hp?

€Em — €Emt1

for T™M ()
. = . - €m + 6mil
lim R, = lim I'; —
ke oo ky = oo m — Hm
Bzt ™ Hm for TE (")
Pm+1 + P
(52)
and
Tn? = Trflk,>>k,,.;
2
— =" for TM ()
. = . = €m + Em+1
lim 7, = lim 7, — )
ki — ke— o
—SHmil o TE .
Hm+1 + Y
(53)

As is evident from (51) for any multilayered media with
a nonzero thickness, we will have

lim T,ﬁo —> (.

ki — o

(54)

The numerical implication of this phenomena is that for
large values of k,, the effective reflection and transmission
coeflicients, R, and T,,, can be replaced by their associ-
ated half-space reflection and transmission coefficients, I',,
and 7,,. Also it is evident from Figs. 7 and § that for a set
of constitutive parameters and layer thicknesses, there ex-
ist some value of k, for which the denominators of effec-
tive reflection and transmission coefficients go to zero and
consequently these coefficients become singular. These
values of k, correspond to the surface wave modes, and
the associated residues are proportional to the fields of
these modes where are launched by the impressed source
[6], [20]. Also, the sharp variation of these effective re-
flection and transmission coefficients, at the various points
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Fig. 7. Real and imaginary parts of effective TM reflection coeflicients as a function of normalized k, (with respect to kg) for a
half-space, as well as for one-layer and two-layer media on a half-space. The relative constitutive parameters and layer thick-
nesses are: (uo,, = 1.0, €0, = 1.0), (uy,, = 1.2, &, = 3.25), (4>, = 1.3, &, , = 10.2), (3, = 1.6, €, = 2.2),{d| /N =
0.1), and (d, /X = 0.1).
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Fig. 8. Real and imaginary parts of effective TM transmission coefficients as a function of normalized k, (with respect to k)
for a half-space, as well as for one-layer and two-layer media on a half-space. The relative constitutive parameters and layer
thicknesses are: (uo = 1.0, ¢, = 1.0), (u;, = 1.2, ¢, , = 3.25), (s, = 1.3, &5, = 10.2), (43, = 1.6, &5, = 2.2), (d, /N
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Fig. 9. Real and imaginary parts of effective TE reflection cocfficients as a function of normalized k, (with respect to k) for a
half-space, as well as for one-layer and two-layer media on a half-space. The relative constitutive parameters and layer thick-
nesses are: (ug,, = 1.0, €0, = 1.0), (1, = 1.2, €, = 3.25), (42, = 1.3, 6, = 10.2), (43, = 1.6, &5, = 2.2), (d, /D¢ =
0.1), and (d> /N = 0.1).
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Fig. 10. Real and imaginary parts of effective TE transmission coefficients as a function of normalized k, (with respect to ko)
for a half-space, as well as for one-layer and two-layer media on a half-space. The relative constitutive parameters and layer
thicknesses are: (uo, = 1.0, €5, = 1.0), (41, = 1.2, ¢, , = 3.25), (p., = 1.3, &, = 10.2), (y3 , = 1.6, 65, = 2.2), (d\ /N
= 0.1), and (d,/Ng = 0.1).
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in these Figures result from an abrupt phase change of the
associated half-space reflection and transmission coeffi-
cients at the vicinity of k&, = k,,, for (m = 0, 1, 2, or 3).

VI. CONCLUSION

A relatively simple and systematic approach is taken to
drive the dyadic Green’s function for a multilayered di-
electric/magnetic media via the two (£)-directed solenoi-
dal eigenfunctions, and the utilization of the Lorentz re-
ciprocity theorem such that it provides a useful physical
interpretation. It is shown that the Green’s dyadic can be
written in terms of the spectrum of plane waves (TE and
TM) which resemble the response of a source excited
multiconnected piece-wise uniform transmission line. The
concept of effective reflection and transmission coeffi-
cients is discussed, and the physical interpretation of the
individual terms along with the limiting behavior of some
of these terms is given.

APPENDIX
Piecewise UNIFORM TRANSMISSION LINE THEORY

In this Appendix we briefly review the piecewise uni-
form transmission line theory. As explained earlier, the z
and z’ functional dependence of the field quantities ex-
cited by a electric point dipole current source in a general
multilayered media is analogous to the problem of source
excitation of a piecewise uniform transmission line. The
voltage and current on a source free uniform transmission
line with wave number «,, and characteristic impedance
1, can be expressed as

Vm(Z) = I/inc, m(Z())(e —Jkmlz — z0) + Rm(zo)ejf‘m(~ - ZO))’

Vznc, m(ZO)

m

L) = (e 7MY — R, (2)e™ ), (AI)

where V. .(zo) and R, (z) are the incident voltage and
reflection coefficient respectively at point z = z,. The re-
flection coefficient, R, (z), and the impedance, Z,(z), at a
point z are related by

Zm (Z) — M,

% )
Z, @) + 1, Znd) =

L)’

It is desired to derive some expressions for a piecewise
uniform transmission line that relate the voltages and cur-
rents at a pair of points on the line which are located in
different sections. Let us first consider a simple configu-
ration shown in Fig. 11 which consists of two semi-infi-
nite transmission lines corresponding to regions (n — 1)
and (n + 1), connected with a finite line, d, = z, — z,_,,
corresponding to region (n). For a known incident voltage
in region (n — 1), it is of interest to find voltages and
currents in different sections of the transmission line. For
doing so, one needs to find the incident voltage and re-

R,(2) = (A2)

each region. The reflection coefficient at z, _; in region (n
— 1) can be written as

_Azy1) — Moy

R,_, = , (A3)
T 2@ M
where
1 + R, e ¥k Mis1 = Mn
ZZ,o) =y ———m—: R, =L 0 (A4
@) = M TR et A9

After incorporating (A4) into (A3), the reflection coeffi-
cient R, _; can be expressed as

R _ Fn—] + Rne_jZKndn . — N = Mn—1
"L 4 T, Rye % Sl T o
(A5)

Expression R, | in (A5) is called “‘effective’’ reflection
coeflicient for region (n — 1). It is a coefficient that relates
all interactions from the presence of other regions to the
incident voltage in region (n — 1). One can also relate the
incident voltages of regions (n — 1) and (n) in the follow-
ing form:

Vn— I(Zn— 1) = Vinc,n - l(zn - l)(l + Rn— I(Zn— 1))
= Vinen(Zy- (1 + Rye 7%y, (A6)
hence; V. .(z,-1) can be expressed in terms of

Vinen—1(Zn—1) @8
VirelZn =00 = Ty - 1@~ 1)WVine,n - 120 - 1) (A7)
where
1+ R,
1 + R,e /2’

After substituting (AS) for R, _, in (A8), T,,_, can be ex-
pressed as

T,y = (A8)

Tn—1

T, = ;
n-l 1 + I‘n_ane*]2Kndn

Th—1 = 1+ I‘n—l'

(A9)

T,_, in (A9) is called ‘‘effective’’ transmission coeffi-
cient. It is a coeflicient that relates the incident wave of
region (n — 1) to the incident wave of region (n). There-
fore, the voltage at a point z in region (1) can be expressed
in terms of the incident voltage at point z, in region (n —
1) by incorporating (A7) into (A1); hence,

Vn(z) = Vinc.n - 1(20)6' 11 2) Tn -1 e_jknd"

c (e TG 4 R ety (A10)

The incident voltage in region (n + 1) can likewise be
found in terms of the voltage in region (n).

This formulation can be generalized to the total of (N
+ 2) number of finite length transmission lines, (0" and
N + DH* regions are semi-infinite), with the character-
istic impedance and wavenumber of 7,, and «,,, respec-
tively for (0 <= m < N + 1), as shown in Fig. 12. The
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Fig. 12. General piecewise uniform transmission line; incident waves travel in +£-direction.

voltage and current at point z in region (m), as a function
of the incident voltage at point z = 0 in region (0) can be
written as

Val®) = Vine.o)e 02T e one»

+ Rm> e +ij(Z_Zm))’

V> (0 ' )
Im(Z) - mc,O( ) PRl ; O(e —jkm(Z — Zm)

m
_ R;e+jkm(z—1m))’ (All)
where, T, o and R, are respectively defined as
m-=1
mo = I TP @e et
>
> _ i
Ti (zi) - 1+ Fi>Ri>+le—j2K,+1d,+|s (A12)
and
F,i + R,i e—j2xm+1dm+1
R, Gw) = - (A13)

1 + F;R;+le—j2km+ldm+1’

where R, and T; can be calculated by successive ap-
plications of (AS5) and (A9), starting from region N. The
superscript (>) explicitly used to imply that the incident
field travels in (+Z2)-direction.

All equations derived here are applicable for the case

in which the incident field travels in (—Z)-direction, pro-
vided «,, > —«,, and (mF) — (m=+). Hence; the effective
reflection and transmission coefficients for the geometry
depicted in Fig. 13 are respectively defined as

< < —J2km — 1dm — 1
', + R, _ e *n '

<, _ .
Rm(zm}' s 1+ P’:R;_Ie—ﬁxqum—w
rs = —__Zm-l ; zm, (A14)
m—1 m
<
< _ Tm .
Tm(zm) = 1 + F’:R;_le—ﬂxm—ldm—l’
T =1+Tp. (A15)
and
m+1
Too= 1L TF@)e e, (A16)

Note that in this case the subscript m of the indices of the
layers in Fig. 13 is monotonically decreasing; (i.e., m <
0; In—1 < Zm)-

It is evident from the above analysis that once the in-
cident waves on either side of the source in region (0) are
known, the voltages and currents of other regions of the
transmission line will be specified.
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Fig. 13. General piecewise uniform transmission line; incident waves travel in —Z-direction.
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